Finding Good Random Elliptic Curves for Cryptosystems Deened over If 2 N

نویسنده

  • Reynald Lercier
چکیده

One of the main diiculties for implementing cryptographic schemes based on elliptic curves deened over nite elds is the necessary computation of the cardinality of these curves. In the case of nite elds IF2n, recent theoretical breakthroughs yield a signiicant speed up of the computations. Once described some of these ideas in the rst part of this paper, we show that our current implementation runs from 2 up to 10 times faster than what was done previously. In the second part, we exhibit a slight change of Schoof's algorithm to choose curves with a number of points \nearly" prime and so construct cryptosystems based on random elliptic curves instead of speciic curves as it used to be.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Faster Attacks on Elliptic Curve Cryptosystems

The previously best attack known on elliptic curve cryptosystems used in practice was the parallel collision search based on Pollard's-method. The complexity of this attack is the square root of the prime order of the generating point used. For arbitrary curves, typically deened over GF(p) or GF(2 m), the attack time can be reduced by a factor or p 2, a small improvement. For subbeld curves, th...

متن کامل

Orders of CM elliptic curves modulo p with at most two primes

Nowadays the generation of cryptosystems requires two main aspects. First the security, and then the size of the keys involved in the construction and comunication process. About the former one needs a difficult mathematical assumption which ensures your system will not be broken unless a well known difficult problem is solved. In this context one of the most famous assumption underlying a wide...

متن کامل

An efficient blind signature scheme based on the elliptic curve discrete logarithm problem

Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...

متن کامل

Finding More Non-Supersingular Elliptic Curves for Pairing-Based Cryptosystems

Finding suitable non-supersingular elliptic curves for pairing-based cryptosystems becomes an important issue for the modern public-key cryptography after the proposition of id-based encryption scheme and short signature scheme. In previous work different algorithms have been proposed for finding such elliptic curves when embedding degree k ∈ {3, 4, 6} and cofactor h ∈ {1, 2, 3, 4, 5}. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997